Design
Plasti-Co is an industry leader in feed screw design. Plastic-Co will design general-purpose screws with the flexibility to run a wide variety of materials or design a custom screw to match your material needs. These designs incorporate mixing, improved output, low shear designs for heat sensitive plastics, venting, up-sizing and down-sizing injection units.

Materials
With today's wide variety of plastics ranging from mild to very abrasive and corrosive, what is often overlooked is the need to balance the screws yield strength with it's wear resistance and overall hardness. The right screw materials can greatly improve your screws life and the quality and consistency of your final product. Below is a list of the more common steels used for feed screws.

Alloy Steels
AISI 4140, AISI 4150, AISI 4340, Nitralloy 135M
Alloy steels are very high in yield strength and low cost. They have relatively low abrasion and corrosion resistance. For this reason, they are almost always combined with welded hard-surfacing and root treatments, like chrome or nitriding.

Stainless Steels
300 & 400 series, 17-4PH, 15-5PH.
These steels provide good corrosion resistance and both the 17-4PH and 51-5PH have higher yield strength than most alloy steels. The wear resistance is poor. Stainless steels can be heat treated or hard-faced welded to improve the wear resistance of the flights. These steels will stop or lessen the problem of corroded internal threads, often a concern to injection molders. For extremely corrosive plastics like fluorocarbons there are specialty steels like Hastelloy C-276 & Duranickel.

Tool Steels
AISI S-7, AISI D-2, AISI M-2, H-13, CPM-9V, CPM-440V.
After heat treat, tool steels have high abrasion resistance both on the flights and roots, better corrosion resistance than alloy steels, but very low yield strength. The cost to use tool steels for feed screws is much higher than alloy steels due to the material cost, merchantability and heat-treating costs. The cost difference is not significant on smaller screws, but can be as much as 5 times the cost of alloy steels on large screws.
Mixing Screws
Most feed screw manufactures offer a “ONE SIZE FITS ALL” mixing screw or a section in their general purpose screw, without even knowing what the customer’s problems or needs are. They often charge a very high premium for their screw which more often then not, does not solve the problem and may even make it worse.

At Plasti-Co each customer needs are evaluated. A new screw is designed or a change to the customers screw design is proposed to overcome a problem or improve their process.

Plasti-Co’s P-3000 is a very versatile mixer with 18 parameters that can be changed to more effectively fit a customers needs. Most mixing sections use sample back pressure or flow restriction to cause mixing, which is no more effective then turning up the back pressure on the machine. These types of mixers over shear the material and can burn or degrade the plastic, which greatly reduces the machines output and are difficult to purge.

More important than the mixing section itself is the profile of the screw, it’s section lengths and flight depths. A screw cut too deep in the feed section or with a transition section that is to short can render a screw with the most elaborate mixer useless.

1st - Stage Minimal P-3000 Mixer

The P-3000 can be used where minimal mixing is needed or with very shear sensitive material like PVC, some vinyl and rubbers. It may be used on short L/D ratio screws with a higher compression ratio for mixing standards thermoplastics.

2nd - Stage P-3000 Mixer
The P-3000 concept has worked well in a very wide variety of applications. Compounding companies using it to mix as much as 60% talc powder into P.P. for a more homogeneous parison flow on a high production blow molder. But by far the most common usage is by injection molders for color mixing.

Following are the reasons why:

A. Lower percentage of color concentrate required.
B. Improved overall dispersion and homogeneous melt.
C. Low shear with no “dead ends”.
D. Higher outputs or faster screw recovery in most applications.
E. Easy purging.
F. Flexibility to run a very wide variety of materials with one screw.
G. Higher percentage of regrind can be used.
H. Efficient and cost effective.
Specialty and Mixing Feed Screws
Plasti-Co can build screws with many types of flight designs for different applications. Plasti-Co can improve your screws output, make your process more profitable and improving the mixing action for color or other additives. The right screw for your needs can improve overall part quality and reduce scrap rates.
The increasing use of tool steels in feed screws requires innovative techniques and sound metallurgical know-how when heat treating. Feed screws have high torque loads and very tight straightness requirements. This requires a balance between the finished screws harness to improve wear resistance and its toughness or ability to twist without braking. Screws can be heat-treated to different hardness in certain areas, the shank or drive end of a screw can be softer to resist cracking due to shock loads while keeping the flight area much harder to maximum wear resistance.

Feed Screws in Ion Nitride Process

Heat Treating
Hard-Surfacing

Hard surfacing is a process of protecting metal parts from wear by binding a wear-resistant alloy to the ferrous or alloy base metal. Mostly used on flight tops, it is applied for a final thickness of around 1/16” (.062”). As the wear progresses, the wear resistance will not decrease until the hard surfacing is worn off.

The two most widely known brands of hard surfacing are Colmonoy and Stellite. Each supplier manufactures a number of formulations that are well suited for feed screw use. Colmonoy’s products are nickel based and Stellite uses a cobalt base. These products are specially formulated alloys that contain both wear and corrosion resistant materials like Chromium, Carbon, Nickel, Cobalt, Tungsten and Boron. They range in hardness from 37 to 64 Rockwell.

Coatings & Treatments

The most common screw coating used is chrome plating on the screw root area. Today we have a wide variety of coatings and treatments to improve a feed screws longevity and performance.

Chrome Plating

Chrome is usually applied .0010”-.0015” thick. Chrome is often applied to improve the screw corrosion resistance and to ease in screw cleaning.

Nickel Plating

Nickel done with the electroless method and baked will have a much better corrosion resistance and is harder than chrome. The cost is much higher than chrome.

Chrome Plated Screw

![Hard-Surfacing Feed Screw Mixer](image1)

![Flights with Hard-Surfacing](image2)
Carbide Coating Feed Screws
Plasti-Co provides carbide coating on our feed screws and other high wear components; we offer a full line of abrasion and corrosion resistant coating products to meet the needs of today’s most demanding abrasive and corrosive compounds.

The Process
Very high velocity thermal spray technology uses extremely high temperatures above 6000 F, to heat ultra-fine particles of the coating material, typically less then 0.0003” in diameter. The molten particles are applied to the feed screw at very high velocities of approximately 2,500 feet per second. Upon impact the particles flatten, solidify, and form an interlocking bond to themselves and the screw substrate. The kinetic energy released by impingement upon the substrate contributes additional heat and promotes bonding. The coating is built up to the specified thickness while the screw is rotated and passed in front of the gun. The sound level of the spray gun is the same as that of a jet engine during take off.

The Coating
Plasti-Co's "PCS" brand carbide coatings provides abrasion resistant characteristics unmatched by any of the conventional hard-surfacing alloys and treatments offered. It provides a crack free coating of 80 to 90% sub-micron sized Tungsten Carbide, with an overall hardness of 68 to 71 Rockwell. The common flight hard-surfacing alloys only have a 53 to 58 Rockwell.

Thickness & Finish
Thickness is determined by application and feed screw size. The coating can be applied in thickness of .005” to .015” per side, providing .010” to .030” of total wear protection.

We offer a variety of root and flight side surface finishes ranging from +/-140 RMS to our 16-32 RMS finish, which rivals chrome plating in appearance. Carbide coated screws that are not polished after the coating is applied can in some cases, cause feed problems and can take much longer to purge or change materials.
Beneficial characteristics of our coatings include:
- Excellent wear resistance.
- Can be stripped when worn.
- Corrosion resistance.
- Low coefficient of friction when high polished.

Rebuilding PCS coated screws:
- When worn, our coatings can be stripped and the screw re-coated.